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Disordered systems like liquids, gels, glasses, or granular materials
are not only ubiquitous in daily life and in industrial applications,
but they are also crucial for the mechanical stability of cells or
the transport of chemical and biological agents in living organ-
isms. Despite the importance of these systems, their microscopic
structure is understood only on a rudimentary level, thus in stark
contrast to the case of gases and crystals. Since scattering exper-
iments and analytical calculations usually give only structural
information that is spherically averaged, the three-dimensional
(3D) structure of disordered systems is basically unknown. Here,
we introduce a simple method that allows probing of the 3D struc-
ture of such systems. Using computer simulations, we find that
hard sphere-like liquids have on intermediate and large scales a
simple structural order given by alternating layers with icosahe-
dral and dodecahedral symmetries, while open network liquids
like silica have a structural order with tetrahedral symmetry. These
results show that liquids have a highly nontrivial 3D structure
and that this structural information is encoded in nonstandard
correlation functions.

liquids | three-dimensional structure | Lennard–Jones | silica |
computer simulations

The microscopic structure of many-particle systems is usually
determined from scattering experiments that give access to

the static structure factor S(~q), ~q is the wave vector, and for crys-
tals, such measurements allow to obtain a complete knowledge
of the structure of the material (1–4). This is not the case for dis-
ordered materials such as liquids, foams, and granular materials,
since on the macroscopic scale, these are isotropic, and hence
S(~q) depends only on the norm q = |~q |, i.e., the whole three-
dimensional (3D) structural information is projected onto a
single function S(q). This projection entails a huge loss of struc-
tural information, which subsequently has to be recovered, at
least partially, from physical arguments on the possible arrange-
ment of the particles. Such arguments exist for the first few
nearest-neighbor shells of the particles (5–17) but not for the
arrangements on larger scales.

Microscopy on colloidal systems and computer simulations
have shown that for hard sphere-like systems, the local structure
can be surprisingly varied, in particular, if the liquid is constituted
by more than one type of particle. The geometry of these locally
favored structures depends on packing fraction and is rather sen-
sitive to parameters like the composition of the system, the size
of the particles, or the interaction energies (7, 11). As a conse-
quence, it has so far not been possible to come up with a universal
description of the structure on the local scale, and it is unlikely
that such a universal description exists.

In view of this difficulty, it is not surprising that very little effort
has been made so far to investigate the structure of disordered
systems on length scales beyond the first few nearest neighbors
(11, 16). A further reason for this omission is the fact that the
characterization of the structure on larger scales seems to be a
daunting task, since already the classification of the local struc-
ture is highly complex. Other studies have therefore focused on
the possible existence of orientational order that extents to larger

distances (10, 18, 19), but no such order was found beyond the
scale of a few particle diameters (19). However, whether or not
disordered systems have indeed a structural order that extends
beyond a few particle diameters is an important question since it
is, e.g., related to the formation of the critical nucleus for crystal-
lization or the possible growth of a static length scale that is often
invoked for rationalizing the slow dynamics in glass-forming sys-
tems (3, 10, 20–24). In the present work, we use an approach to
reveal that liquids do have a highly nontrivial 3D structure that is
surprisingly simple at length scales beyond the first few neighbors.

In order to show the generality of our results, we will con-
sider two systems that have a very different local structure: a
binary mixture of Lennard–Jones particles (BLJM), with 80%
A particles and 20% B particles (25), and silica (Materials and
Methods). The former liquid has a close-packed local structure
that is similar to the one of a hard sphere system, while the latter
is a paradigm for an open network liquid with local tetrahedral
symmetry (3).

We study the equilibrium properties of the BLJM in a tem-
perature range in which the system changes from a very fluid
state to a moderately viscous one, i.e., 5.0≥T ≥ 0.40 (25). Silica
is studied at 3,000 K, a temperature at which the liquid is rela-
tively viscous (26). To probe the 3D structure of the BLJM, we
introduce a local coordinate system as follows (Fig. 1A): take any
three A particles that touch each other, i.e., they form a triangle
with sides that are less than the location of the first minimum in
the radial distribution function gAA(r), i.e., ≈ 1.4 (SI Appendix,
Fig. S1A). We define the position of particle 1 as the origin,
the direction from particles 1 to 2 as the z axis, and the plane
containing the three particles as the z–x plane. (For the case of
SiO2, we use a Si atom as the central particle and two nearest
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Fig. 1. Distribution of particles in three dimensions for the BLJM. (A) The definition of the local coordinate system involves three particles that are nearest
neighbors to each other. (B) Radial distribution function gAN(r) for different temperatures (N = A + B). For the sake of clarity, the different curves have
been shifted vertically by multiples of 0.3. (C) An icosahedron is the dual polyhedron of a dodecahedron and vice versa. (D–F) Density distribution ρ(θ,φ, r)
for different values of r, i.e., the distribution of the particles that are in a spherical shell of radius r and thickness 0.4 around the central particle. The
temperatures are 2.0, 0.8, and 0.4 for D, E, and F, respectively.

neighbor oxygen atoms to define the three coordinate axes.) This
local reference frame allows to introduce a spherical coordinate
system θ,φ, r and to measure the probability of finding any other
particle at a given point in space, i.e., to measure a four-point
correlation function. Note that this coordinate system can be
defined for all triplets of neighboring particles, and these density
distributions can be averaged to improve the statistics. Since this
coordinate system is adapted to the configuration by the three
particles, it allows to detect angular correlations that are not
visible in g(r) or in previously considered structural observables.

For the BLJM, Fig. 1D shows the 3D normalized distribution
ρ(θ,φ, r) of the particles on the sphere of radius r centered at an
A particle. The temperature is T =2.0, i.e., above the melting
point of the system, which is around T =1.0 (27). We recognize
that ρ(θ,φ, r) has a noticeable angular dependence not only at
small distances but also at intermediate ones, i.e., r =4.5, which
corresponds to the fifth nearest-neighbor shell in g(r) (Fig. 1B).
Here, we denote by g(r) the partial radial distribution function
gAN(r), where N stands for A + B (see also SI Appendix, Fig. S1).
If temperature is decreased to T =0.8 (Fig. 1E), the angular
signal can be easily detected up to r =5.9 and for T =0.40
(Fig. 1F), even at r =8.0, i.e., the ninth nearest-neighbor shell.

These snapshots show that this liquid has a nontrivial angular
correlation that extends to distances well beyond the first few
nearest-neighbor shells (see Movies S1 and S2 for a dynamical
presentation of these results).

Furthermore, one notes that ρ(θ,φ, r) has a highly symmetric
shape: for r =1.65, corresponding to the distance between the
first minimum and the second nearest neighbor peak in g(r), one
observes a dodecahedral-like symmetry (Fig. 1C). For r =2.2,
the distribution has instead an icosahedral symmetry. This result
can be understood by recalling that an icosahedron is the dual
of a dodecahedron, and vice versa (Fig. 1C), and hence the local
dips formed by particles in the first minimum will be occupied by
the particles in the subsequent shell. As shown below, this “dual-
ity mechanism” works even at large distances, thus leading to a
nontrivial angular correlation in which, as a function of r , density
distributions with icosahedral symmetry alternates with distribu-
tions with dodecahedral symmetry. Fig. 1 E and F show that with
decreasing temperature the intensity of the signal at intermedi-
ate and large distances increases, indicating an enhanced order
at low T .

Also for the case of the network liquid SiO2, one finds a pro-
nounced anisotropy of the density correlation function (Fig. 2).
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Fig. 2. Distribution of particles in three dimensions for silica (T = 3,000 K). The thickness of the shell is 1 Å. Depending on r, the high-/low-density regions
show a tetrahedral symmetry with two different symmetry axes.

In contrast to the hard sphere-like liquid one finds here that
the spherical shells with a pronounced orientational order all
show a tetrahedral symmetry, which makes sense since the dual
of a tetrahedron is again a tetrahedron. We emphasize that for
geometrical reasons, at large r , a region with a high value of
ρ(θ,φ, r) is not a single particle but a structure that grows lin-
early with r and hence is a whole collection of particles, i.e., for
fixed r , the structure is given by patches with a high density of
particles that alternate with patches with low density.

To analyze these findings in a quantitative manner, we use
the standard procedure to decompose the signal on the sphere
into spherical harmonics Y m

l , ρ(θ,φ, r)=
∑∞

l=0

∑l
m=−l ρ

m
l (r)

Y m
l (θ,φ), where the expansion coefficients ρml are given in Mate-

rials and Methods, and to consider the square root of the angular
power spectrum Sρ(l , r)= [(2l +1)−1 ∑l

m=−l |ρ
m
l (r)|2]1/2. For

the BLJM, the component with l =6 has the largest amplitude
(SI Appendix, Fig. S2A), independent of r , a result that is rea-
sonable in view of the icosahedral and dodecahedral symmetries
that we find in the density distribution. For SiO2, it is the com-
ponent l =3 that has the strongest signal (SI Appendix, Fig. S2B)
since this mode captures well the tetrahedral symmetry of the
density field.

In Fig. 3, we show the r-dependence of Sρ(l , r), and one sees
that for both systems, the signal decays quickly with increasing r .
For the BLJM, Fig. 1F shows that at distance r =5.85, the den-
sity distribution has a pronounced structure, while from Fig. 3A,
one sees that at this r , the absolute value of Sρ(l , r) is small.
This smallness is due to the fact that Sρ(l , r) is not only sensi-
tive to the angular dependence of the distribution but also to the
amplitude of the signal. In order to probe whether or not the
density distribution has a pronounced symmetry, it is therefore
useful to consider a normalized density distribution η(θ,φ, r)=
[ρ(θ,φ, r)− ρmin(r)]/[ρmax(r)− ρmin(r)], where ρmax(r) and
ρmin(r) are the maximum and minimum of ρ(θ,φ, r), respec-
tively (at fixed r). The square root of the angular power spectrum
of η(θ,φ, r), Sη(r), is included in Fig. 3A as well. We see that
for the BLJM, Sη oscillates around a constant value, which
demonstrates that for this system, the density distribution has
a pronounced orientational order even at large distances. For
distances larger than a threshold ξη(T ), Sη(r) starts to decay
before it reaches at large r a value that is determined by the
noise of the data. (See SI Appendix for a precise definition of
ξη and its T-dependence [SI Appendix, Fig. S5].) For distances
smaller than two- to three-particle diameters, there is no direct
correlation between Sρ(r) and g(r) since at these r values,
the local packing is determined also by energetic considerations
(SI Appendix, Fig. S3).

Most remarkable is the observation that for the case of the
BLJM, the height of the local maxima in Sη(r) shows a peri-
odic behavior in that a high maximum is followed by a low
one. A visual inspection of ρ(θ,φ, r) reveals that these high/low
maxima correspond to distances at which the distribution has a
pronounced icosahedral/dodecahedral symmetry, demonstrating
that these two Platonic bodies are present not only at short dis-
tances but also at large ones, in agreement with the snapshots

in Fig. 1. One thus concludes that for hard sphere-like systems,
the distribution of the particles in three dimensions is given by
shells in which particles are arranged in an icosahedral pattern,

A

B

Fig. 3. Quantitative characterization of the structural order. (A and B) The
angular power spectra and radial distribution function for the BLJM at
T = 0.4 (A) and for silica at T = 3,000 K (B). The power spectra Sρ(6, r) and
Sρ(3, r) (magenta curves) show an exponential-like decay as a function of
the distance r. The power spectra for the normalized density distribution,
Sη(6, r) and Sη(3, r) (red curves), stay large even at intermediate r. For the
BLJM and r & 4.0, the high/low maxima in Sη(r), labeled I and D, coincide
with the minima/maxima (labeled M) in |g(r)− 1| (blue line). This up–down
behavior is related to the alternating icosahedral/dodecahedral symmetry
in the distribution of the particles when r is increased. For SiO2, the arrows
indicate the distances at which gSiSi(r) = 1. For better visibility, Sη(r) and
|g(r)− 1| have been shifted vertically.
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followed by a shell in which there is a dodecahedral pattern.
For distances larger than r ≈ 4, one finds that the radial posi-
tions of these two geometrical arrangements match perfectly the
locations of the minima/maxima in g(r) (Fig. 3A). This obser-
vation can be rationalized by the fact that a dodecahedron has
20 vertices [i.e., regions in which ρ(θ,φ, r) has high values] and
an icosahedron only 12, thus making that the former structure
corresponds to the maxima of g(r) and the latter to the min-
ima. Similar results are found for T =2.0 (SI Appendix, Fig. S4),
demonstrating that these findings hold also for liquids that are
not supercooled.

In contrast to the BLJM, we find that for silica (Fig. 3B), the
locations of the maxima in Sρ(3, r) do not correspond to the
ones in |gSiSi(r)− 1| but are instead close to distances at which
g(r)= gSiSi(r)= 1 (as indicated by the arrows in the graph), i.e.,
corresponds to a distance at which one expects no structural
order. (See SI Appendix, Fig. S1D for the Si–O partial radial cor-
relation function.) This shows that for liquids that have an open
network structure, the distances at which one finds the highest
orientational symmetry is not associated with a dense packing
of particles, in contrast to hard sphere-like systems. Finally, we
note that for both systems, the decay of Sρ(r) matches very well
the one of g(r). This indicates that the two functions are closely
related to each other, i.e., the loss in the symmetry of the density
field in three dimensions leads to the decay in the structure as
measured by g(r), a result that is reasonable since the angular
integral of ρ(θ,φ, r), if not normalized, is proportional to g(r).

Fig. 3B shows that also for silica, Sη(r) is high for small and
intermediate distances, but even in this range, it decreases slowly,
indicating that for this network liquid, the orientational symme-
try is gradually lost with increasing r . This result might be related
to the fact that the coordination number of the silica network is

lower than the one of the densely packed hard sphere-like liq-
uid; hence, the former structure is more flexible, and therefore it
is more difficult to propagate the orientational order in space to
large distances.

Since we have found that the distribution of the particles
around a central particle is anisotropic, it is of interest to con-
sider also the radial distribution functions in which one probes
the correlations in a specific direction with respect to the local
coordinate system shown in Fig. 1A. This type of information
can be obtained for colloidal systems from confocal microscopy
experiments and, more indirectly, from scattering experiments
(8). Insets in Fig. 4 A and C show the directions we considered
for the two type of liquids: for the BLJM, the directions corre-
sponding to the vertices of the icosahedra/dodecahedra and the
directions given by the midpoints between these two type of ver-
tices; for silica, the directions of the vertices of the tetrahedra, the
points given by the midpoints of the faces of the tetrahedra, and
the directions given by the midpoints between the two former
directions.

In Fig. 4A, we show for the BLJM, the radial distribution func-
tions for these special directions, and one recognizes that the
amplitude of the signal depends indeed strongly on the direc-
tion considered. For the directions of the icosahedra and of the
dodecahedra, gI (r) and gD(r), respectively, we find for interme-
diate and large distances that gD(r) oscillates in phase with g(r),
whereas gI (r) has oscillations that are in antiphase. These obser-
vations are coherent with the aforementioned argument that the
number of vertices in the dodecahedra exceed the ones for the
icosahedra.

Furthermore, Fig. 4A shows that the amplitudes of the oscil-
lations in gI (r) and gD(r) are significantly larger than the
ones found in g(r), a result that is reasonable since the latter

A B

C D

Fig. 4. Anisotropic radial distribution functions. (A) BLJM. (A, Inset) I and D are the directions defined by the vertices of the icosahedra/dodecahedra. N is
the midpoint between these two directions. (A) Radial distribution function as measured in the directions I, D, and N. (B) |g(r)− 1| on logarithmic scale. For
the sake of clarity, only the maxima in the curves are shown. (C) Silica. (C, Inset) T1 and T2 are the directions defined by the two interlocked tetrahedra. N
is the midpoint between these two directions. (C) Radial distribution function as measured in the direction T1, T2, and N. (D) |g(r)− 1| on logarithmic scale.
For the sake of clarity, only the maxima in the curves are shown.
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Fig. 5. Three-dimensional representation of the density field. The shown
layers correspond to distances at which Sρ(r) has a local maximum. Only
regions with high density (covering 35% area of the sphere) are depicted.
(A) BLJM at T = 0.4. The bluish/reddish colors correspond to the loca-
tions of the high/low maxima in Sη(r) and thus to shells with icosahe-
dral/dodecahedral symmetry. (B) Silica at T = 3,000 K. The high-density
regions form interlocked zones with a tetrahedral symmetry.

function is a weighted average of the two former ones and hence
will be affected by cancellation effects. The distribution func-
tion in the direction that corresponds to the midpoint of the
line connecting two neighboring vertices of an icosahedron and
a dodecahedron, gN (r), shows significantly smaller oscillations
than g(r), a result that is expected since one probes the struc-
ture in a direction that does not pass close to the locations
that correspond to the vertices of the icosahedra/dodecahedra.
Fig. 4B shows these distribution functions on a logarithmic scale.
(For the sake of clarity, only the maxima and minima of the
functions are shown.) One notices that the slope of the curves
for g(r), gI (r), and gD(r), i.e., the length scale over which
the correlation decays, is basically independent of the function
considered, demonstrating that they are indeed closely related
to each other. In contrast to this, the data from gN (r) decay
faster, showing that in this direction, the correlation length is
smaller.

For the case of silica, the connection between the extrema in
g(r) and the ones obtained from the radial distribution functions
in the special directions T1 and T2 (Fig. 4 C, Inset) is not straight-
forward. One finds that the peaks in gT1(r) (gT2) are where g(r)
rises (decreases) quickly (Fig. 4C). In fact, the extrema of gT1(r)
are very close to the distances at which g(r) becomes 1.0, i.e., an
r at which the Si density corresponds to the one expected for an
ideal gas. The reason for this is presently not known, and thus it
will be interesting to determine whether this is a general feature
for liquids that have an open network structure.

The radial distribution function for the “neutral” direction N
has a signal that is in phase with g(r), and its amplitude is smaller
than the one of g(r). The latter result is expected since one mea-
sures the density field in a direction in which the fluctuations
between the interlocked tetrahedra basically cancel each other.
Fig. 4D shows on logarithmic scale the maxima of |g(r)− 1| that
correspond to the g(r) curves in Fig. 4C. One recognizes that all
of them decay in the same exponential manner with a slope that
is independent of the direction.

To give a comprehensive view of the particle arrangement in
three dimensions, we present in Fig. 5 the density distribution of
the two systems. The colored regions correspond to the zones in
which the particle density is high, and, by construction, they cover
35% of the sphere. For the BLJM at intermediate and large dis-
tances, one recognizes clearly the presence of high density zones
with icosahedral symmetry (bluish color) interlocked with zones
with dodecahedral symmetry (reddish color). The directions in
which the blue and red regions touch each other correspond to
the neutral direction N defined above and in which the parti-
cle correlation is weak. For silica, one finds instead interlocked
tetrahedra at all distances (Fig. 5B). Again, the neutral direc-
tion corresponds to the one in which the blue and yellow regions
touch.

In conclusion, we have demonstrated that liquids have nontriv-
ial structural symmetries at beyond short range that have gone
unnoticed so far. This result has been obtained by using a method
that takes into account the 3D angular dependence of the struc-
ture and which can be readily applied to any system for which the
particle coordinates are accessible, such as colloidal and gran-
ular systems, or materials in which some of the particles have
been marked by fluorescence techniques (9, 28–31). Since we
find that the nature of the orientational order in three dimen-
sions depends on the system considered, the method allows to
make a more precise classification of the structure of liquids,
an aspect that should trigger the improvement of experimental
techniques that probe this structural order.

Materials and Methods
System and Simulations. The BLJM we study is a 80:20 mixture of
Lennard–Jones particles (types A and B) with interactions given by
Vαβ (r) = 4εαβ [(σαβ/r)12− (σαβ/r)6], whereα, β ∈{A, B}, σAA = 1.0, εAA =

1.0, σAB = 0.8, εAB = 1.5, σBB = 0.88, and εBB = 0.5 (25). Here, we use σAA

and εAA as the units of length and energy, respectively. We set the mass of
all particles equal to m = 1.0 and the Boltzmann constant is kB = 1.0. We
simulate a total of 105 particles at constant volume (box size, 43.68) and
temperature. At the lowest temperature, T = 0.40, the run was 1.4 · 108

time steps (step size is 0.005) for equilibration and the same length for
production, time spans that are sufficiently large to completely equilibrate
the system, i.e., the mean squared displacement (MSD) of the particles was
larger than 1.0. For higher T values, the MSD was significantly larger. For
the analysis of the data, we used 8 and 20 configurations for Sρ and g(r),
respectively. Previous studies have shown that this system starts to show a
tendency to crystallization at temperatures around 0.4 if the system is sim-
ulated for several α-relaxation times (32). However, our simulations lasted
only a few α-relaxation times (the MSD has reached 1 to 2), which is long
enough for equilibrating the liquid but not long enough for allowing the
system to crystallize (as indicated by the static structure factor; SI Appendix,
Fig. S1). Also, all of our results show a completely smooth dependence on
temperature, and hence it is unlikely that they are affected by the presence
of crystalline order.

For the simulation of silica, we use a recently optimized interaction
potential proposed by Sundararaman et al. and which has been show to
be able to describe reliably the properties of real silica (33). Although this
potential is based only on pair interactions, it has been found to be able to
describe better the structural and mechanical properties than other poten-
tials for silica, including potentials with three-body interactions (33, 34). A
cubic simulation box containing 120,000 atoms was used, which corresponds
at room temperature and zero pressure to a box size of about 120 Å. The
simulation was carried out in the isothermal–isobaric ensemble at 3,000 K
for 106 time steps (step size is 1.6 fs). This time span is sufficiently long to
equilibrate the liquid. (The analysis of the MSD indicates that the liquid has
become diffusive and the mean displacement of Si is larger than 18 Å). After
equilibration, we collected 8 configurations spaced by 105 time steps for the
subsequent structural analysis. Note that the melting temperature of silica
is around 2,000 K; thus, our simulations are far above the melting point,
and the system is in its stable liquid phase. For both systems, we used the
Large-scale Atomic/Molecular Massively Parallel Simulator software (35) to
carry out the simulations.

Angular Power Spectrum. The coefficient ρm
l for the expansion of the density

distribution into spherical harmonics is given by

ρ
m
l =

∫ 2π

0
dφ

∫ π

0
dθ sin θρ(θ,φ, r)Y

m*
l (θ,φ) , [1]

where Y
m*
l is the complex conjugate of the spherical harmonic function of

degree l and order m. In practice, this integration was done for the BLJM by
sampling the integrand over up to 2 · 109 points for each shell of width 0.4.
The corresponding numbers for SiO2 are 108 points and 1.0 Å.

Data Availability. The data discussed in the paper have been deposited in
Zenodo (https://zenodo.org/record/3783469#.XsfaDxZS qN).
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1. Radial distribution functions and static
structure factor

In Fig. S1 we show for the BLJM the three partial radial
distribution functions for different temperatures (see
legend). These graphs demonstrate that these functions
show no marked peaks and that their T−dependence is
very smooth, as expected for a system that is a good
glass-former. Fig. S1D shows for SiO2 at 3000 K the
two partial radial distribution functions related to the
silicon atoms. Also for this system we see that these
two-point correlation functions show no sharp peaks,
i.e. no indication for the presence of crystallites.

Since the presence of cystallization is easier to see in
the reciprocal space, we have for the BLJM also calcu-
lated the static structure factor S(q). This quantity was
determined directly from the positions of the particles, i.e.,

S(~q) = 1
N

N∑
j=1

N∑
k=1

exp[i~q · (~rj − ~rk)] . [S1]

Since the system is isotropic, we have averaged S(~q)
over all wave-vectors ~q that have the same norm q = |~q|. In
Fig. S1E we show the q−dependence of S(q) for different
temperatures. It can be seen that the q−dependence of
the structure is a smooth function of temperature. Also,
the curves show no signs for the growth of sharp peaks,
also not at small wave-vectors (see inset), which is further
evidence that this system does not crystallize even at the
lowest temperature in the time window we have probed.
Qualitatively similar results are obtained for the case of
SiO2.

2. l−dependence of the angular power spec-
trum

In the main text we focus for the BLJM on the results for
the index l = 6 in the expansion of the spherical harmonics
of the density distribution. In Fig. S2A we show the
r−dependence of the angular power spectrum Sρ(l, r) for
other values of l. From this graph one recognizes that
for l = 6 the signal dominates the other curves for most
distances and hence this value for the index is a good

choice for probing the structural order in the liquid. In Fig.
S2B we show the same information for the case of silica
and we see that here the curve for l = 3 is the one with the
highest maxima. From these figures it also becomes clear
that although the absolute height of the curves depends on
l, the general r−dependence is independent of l and that
each curve has the same periodicity, for intermediate and
large r. This result shows that the symmetry properties
of the orientational order in the different coordination
shells is indeed independent of r (if r is not small).

3. Angular power spectra and radial distribu-
tion function at short distances

In The main text we have shown that for intermediate
and large distances the angular power spectra Sρ(r) and
Sη(r) show oscillations with the same periodicity as the
one of the radial distribution function g(r). In Fig. S3 we
show for the case of the BLJM these functions at small
distances, i.e., r < 5.0. One recognizes from this graph
that at these small distances, in particular for r < 3.0,
the r−dependence of g(r) is rather complex because of
the local packing effects of the particles, a behavior that
is in agreement with previous studies of this and similar
systems (1–7). Only for distances larger than around
4.0 the r−dependence of g(r) becomes simpler. This
behavior is also reflected in the r−dependence of Sρ(r)
and Sη(r) that show for ≤ 3.0 a succesion of peaks of
various width and shapes signaling that at these short
distances there is no unique orientational symmetry. Only
at larger distances do these functions start to show a
more regular behavior and they start to oscillate in phase
with g(r). Thus at the distance around r = 3 we have
a crossover between a structure that is determined by
local packing effects to a structure that is determined by
symmetry considerations. This symmetry at large r is in
turn determined by the packing at small r, i.e., in the
case of the BLJM an icosahedra-like structure, while for
silia one has a tetrahedral symmetry.

4. Temperature dependence of the orienta-
tional order

The results in the main text were for a temperature at
which the systems were in a moderately supercooled state

1www.pnas.org/cgi/doi/10.1073/pnas.2005638117
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(silica) while for the BLJM the considered temperatures
spanned a range in which the system was very fluid (high
T ) to rather viscous (low T ). It is important to note
that the orientational order that we have identified is
not a result of the systems being supercooled since it
can already be clearly seen at temperatures at which
the system is a normal liquid. This can be recognized
from Fig. 1D in the main text where we show for the
BLJM the 3D density distribution for various values of
r at T = 2.0, i.e. at a temperature that is more than
twice the melting temperature, which is around 1.0 (8).
Even at this high temperature one can clearly identify
at intermediate distance the presence of shells that have

icosahedral and dodecahedral symmetry. This behavior
is quantified in Fig. S4 which shows for T = 2.0 the
r−dependence of Sρ(6, r) and Sη(6, r). As it was the
case for the lower temperature T = 0.4, we find that
at intermediate distances Sρ(6, r) osciallates perfectly in
phase with g(r) while Sη(6, r) stays large at intermediate
distances, i.e., there is a noticable orientational ordering.

Since for the case of silica the temperature we consider
is about 50% above the melting temperature (2000K), it
is evident that for this system the tetrahedral structure is
already present at temperatures that are well above the
melting point.

Since the orientational order can be detected at all

2



1 2 3 4 5

r

10
-4

10
-3

10
-2

10
-1

S
ρ
(6

, 
r)

, 
S

η
(6

, 
r)

1 2 3 4 5

r

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g
(r

)

T=0.40

S
ρ
(6, r)

S
η
(6, r)

Fig. S3. Angular power spectra and radial distribution function at short
distances for the BLJM. T = 0.4 and l = 6. Note that the double peaks
in the first shell, i.e. r ≈ 1.0 originate from A-B (smaller peak) and A-A
(bigger peak) correlations (see Fig. S1).

temperatures, it is of interest to investigate how this
order depends on temperature and in the following we
present our results for the BLJM. For this system we
have found that at short and intermediate distances the
function Sη(r) is basically a constant before it starts to
drop at large distances, see Fig. 3A. The distance ξη(T )
at which Sη(r) starts to drop can thus be used to de-
fine a static correlation length. To determine ξη we have
calculated the integral I(r, T ) =

∫ r
0 Sη(r

′, T )dr′ and in
Fig. S5A we plot this quantity as a function of r. For
small and intermediate r the integral shows a basically
linear increase with r, because the integrand Sη(r) is es-
sentially a constant, and once Sη(r) starts to decay I(r, T )
becomes a constant. Using a fit with two straight lines
this cross-over point can be determined accurately, see
dashed lines in Fig. S5A, giving thus ξη(T ). Note that
the decrease of Sη(r) at large distances is due to the noise
in the density field ρ(θ, φ, r) and thus the exact value of
ξη depends on the used statistics, i.e. number of points
used to determine ρ(θ, φ, r). Hence if this noise is reduced,
by increasing the number of particles and points that are
used to determine ρ(θ, φ, r), the quasi-constant part of
Sη(r) at short and intermediate r will extent to larger
distances. As a consequence the absolute value of ξη(T )
is not a relevant number. However, if the statistics is kept
constant, i.e. same number of points used to calculate
ρ(θ, φ, r), the T−dependence of ξη is a physically mean-
ingful quantity. The resulting T−dependence is plotted
in Fig. S5D and it will be discussed below.

In Figs. 3A and Fig. S4 we have found that Sρ(r)
has at intermediate and large distances an exponential
dependence on the distance r. In Fig. S5B we show the
r−dependence of Sρ for different temperatures. Note that
we plot only the local maxima of the function since these
have been used to fit the data at intermediate and large
distances with an exponential function (see below). From
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Fig. S4. Structural order in the BLJM at T = 2.0. The angular power
spectra and radial distribution function for the BLJM at T = 2.0. The power
spectrum Sρ(6, r) (magenta curve) shows an exponential-like decay as a
function of the distance r. The power spectrum for the normalized density
distribution, Sη(6, r) (red curve), stays large even at intermediate r. For
r & 4.0 the high/low maxima in Sη(r), labeled I and D, coincide with
the minima/maxima (labeled M) in |g(r) − 1| (blue line). This up-down
behavior is related to the alternating icosahedral/dodecahedral symmetry
in the distribution of the particles when r is increased.

the graph one recognizes that the slope of the curves
decreases with decreasing temperature, indicating that
the associated length scale increases. We obtain this
length scale ξρ by making a fit with an exponential of the
form Sρ(r, T ) ∝ exp(−r/ξρ(T )) and include this quantity
in Fig. S5D as well. Also the function |g(r) − 1| shows
an exponential decay as a function of r (Fig. 3A and Fig.
S4) and in Fig. S5C we present the r−dependence of
this function for various temperatures. (Again only the
location of the maxima are shown.) Fitting these curves
with an exponential function allows to define a length
scale ξg(T ), the T−dependence of which is included in
Fig. S5D as well.

Fig. S5D shows the three length scales ξη, ξρ and ξg(T )
as a function of inverse temperature and one recognizes
that, after appropriate rescaling, the three length scales
collapse onto each other quite well. In the T−range con-
sidered, the scales change by about a factor of 2, i.e. a
relatively modest value. From the graph one recognizes
two regimes: At high T the length scales increase quickly
with decreasing T whereas at low temperatures one finds
a weaker T−dependence and which is compatible with
ln(ξ) ∝ T−1. Hence one concludes that a decreasing
temperature leads to an increasing static length scale, in
agreement with previous studies that have documented
a weak increase of static length scales in glass-forming
systems, Ref. (12) and references therein. Surprisingly
the crossover between the two regimes occurs at around
T = 0.8, thus very close to the so-called “onset tem-
perature” (13) at which the relaxation dynamics of the
system crosses over from a normal dynamics to a glassy

3
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one (14). This result shows that the change in the dy-
namical properties of the system has a counterpart in the
statics, giving hence support to the idea that the latter
allows to understand the former (15).

In recent years many efforts have been made to connect
the slow dynamics of glass-forming systems with an
increasing static length scale (3, 12, 16). In this context
people have also attempted to identify length scales that
are associated with the dynamics and to compare these
dynamic length scales to the static ones. In Fig. S5D
we therefore also include results for the dynamic length
scales that have been obtained in previous works (9–11)
for exactly the same BLJM, namely ξ4 and a point to set
length scale. One sees that these dynamic length scales
show a significantly stronger T−dependence than the
static ones that we have considered here, a result that is
consistent with earlier studies on this question (3).

Movie S1.
This movie shows the density distribution ρ(θ, φ, r) as a
function of the distance r (left panel). The right panel
shows the partial radial distribution function for A-N
pairs (blue curve) as well as the normalized angular
power spectrum Sη(6, r) (red curve). The center of the
vertical moving bar indicating the radius r shown in the
left panel. The temperature is T = 2.0.

Movie S2.
This movie shows the density distribution ρ(θ, φ, r) as a
function of the distance r (left panel). The right panel
shows the partial radial distribution function for A-N
pairs (blue curve) as well as the normalized angular power
spectrum Sη(6, r) (red curve). The center of the vertical
moving bar indicating the radius r shown in the left panel.
The temperature is T = 0.4.1
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