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The conventional wisdom is that liquids are completely disordered and lack nontrivial
structure beyond nearest-neighbor distances. Recent observations have upended this
view and demonstrated that the microstructure in liquids is surprisingly rich and plays
a critical role in numerous physical, biological, and industrial processes. However,
approaches to uncover this structure are either system-specific or yield results that
are not physically intuitive. Here, through single-particle resolved three-dimensional
confocal microscope imaging and the use of a recently introduced four-point correlation
function, we show that bidisperse colloidal liquids have a highly nontrivial structure
comprising alternating layers with icosahedral and dodecahedral order, which extends
well beyond nearest-neighbor distances and grows with supercooling. By quantifying
the dynamics of the system on the particle level, we establish that it is this intermediate-
range order, and not the short-range order, which has a one-to-one correlation with
dynamical heterogeneities, a property directly related to the relaxation dynamics of
glassy liquids. Our experimental findings provide a direct and much sought-after link
between the structure and dynamics of liquids and pave the way for probing the
consequences of this intermediate-range order in other liquid state processes.

colloids | supercooled liquids and glasses | three-dimensional structure | structure-dynamics |
real-space imaging

There is growing evidence of liquids having nontrivial structural order extending well
beyond nearest-neighbor separations and that this ordering plays a decisive role in many
fundamental processes, such as liquid–liquid phase transitions (1), dynamical slowing
down, and the glass transition (2–8), as well as nucleation pathway and polymorph
selection during freezing (1, 9–12). However, uncovering this subtle structure of liquids
requires approaches beyond the standard ensemble-averaged two-point equal time density
correlators (13), which are too coarse a measure. Typically these approaches involve
identifying a liquid’s locally favored structure (LFS)—motifs that satisfy a local, but
not a global, free-energy constraint (2, 8, 14–17), determining the preferred bond-
orientational order (BOO) in liquids (9), or order-agnostic approaches that require
computing multipoint spatial correlators (4–6, 18). Although there is evidence that
LFS motifs form larger clusters (8) and domains of high BOO exist in liquids (10),
and these appear to correlate with dynamics, these approaches are highly system-
specific, making it difficult to draw general conclusions about the role of structure
in determining the behavior of liquids. In addition, identifying LFS in multicomponent
and network liquids is usually a daunting task and in practice often impossible. On
the other hand, while being independent of system details, the oft-used order-agnostic
approaches (5) are challenging to implement, if not impossible, in experiments (6), and
the structure they identify is difficult to interpret in physical terms. This last aspect is
also one of the drawbacks with machine learning–based techniques for probing liquid
structure (19, 20).

A recent advance that sidesteps these issues involves computing a four-point spatial
correlation function highly sensitive to angular structural order that may be present
in liquids (21). Despite being order-agnostic, the strength of this approach lies in its
simplicity, unlike the methods mentioned above. While that numerical study revealed
that both simple and network liquids do indeed have a very rich angular structural
order, extending to distances exceeding eight particle diameters upon supercooling, that
study did not address whether the discovered structure correlates with dynamics (21).
Although a subsequent experiment on bidisperse granules confirmed the existence of such
an intermediate-range order in real systems (22), the system’s athermal and dissipative
nature precluded to establish a link between structure and dynamics. Establishing such a
link is a long-standing goal in liquid-state physics, specifically in the context of the glass
transition problem (23).
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The only experimental prerequisite to implement the approach
laid out in ref. 21 is access to particle position information
in three dimensions (3D). Therefore, colloidal liquids are
particularly well-suited systems since single-particle resolution
imaging techniques allow to access directly the structure and
dynamics in 3D (7). Importantly, since they are also thermalized
like real liquids, seeking out a connection between intermediate-
range structure, if it does indeed exist, and dynamics becomes
possible. Here, we address this question by performing fast 3D
confocal imaging of bidisperse colloidal liquids. We use a binary
mixture of Poly-methylmethacrylate (PMMA) colloidal particles,
of radius rS = 0.755 μm and rL = 0.908 μm (rL/rS ≈ 1.20),
suspended in a mixture of cyclohexyl bromide and decalin, which
matches the density and the refractive index of the particles
(24, 25). The particles were tagged with a fluorophore to enable
3D confocal imaging (Materials and Methods). We maintained
the number density ratio at ≈80:20 between large and small
particles to prevent crystallization and also to make contact with
ref. 21, which used a similar number density ratio (26). To
mitigate wall effects, only particles that were at least 30 μm
away from the bottom of the sample cell were considered for the
analysis (27–29).

Results

Evidence for Intermediate-Range Order in Colloidal Liquids.
Our experiments focus on the volume fraction range 0.25 ≤
ϕ ≤ 0.60 in which the system changes with increasing ϕ from
a fluid to a dynamically arrested state, SI Appendix, Movies S1
and S2. Fig. 1A shows the radial distribution function, g(r),
for different ϕ [Note that here and in the following, we have
rescaled the real distance r′ to a new distance r such that
the first peaks are at the same position (30)]. As is usual for
liquids, g(r) has peaks that decay rapidly with r, indicating
the absence of long-range crystalline order, and no discernible
growing structural correlation with ϕ (SI Appendix, Figs. S1–
S3). We characterize the dynamical slowing down by means of
the mean squared displacement (MSD), 〈1r2(t)〉, Fig. 1B. For
calculating the MSD, we imaged a 2D slice centered within the
3D region-of-interest to capture the dynamics at a higher frame
rate, SI Appendix, Fig. S4 for the MSD of the small and large
colloidal particles. As is typical of liquids at ϕ = 0.25, the MSD
shows diffusive dynamics at all times. With increasing packing
fraction, ϕ ≥ 0.48, the MSD develops a plateau which becomes
increasingly pronounced with ϕ since particle caging becomes
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Fig. 1. Three-dimensional distribution of particles in a binary colloidal mixture. (A) The radial distribution function, g(r), for various volume fractions'. Different
curves have been shifted vertically to improve readability. The radial distance, r′, has been rescaled to r = �r′/�, where � is the size of the large particle, and � is
chosen such that the location of the first peak is at r = 1. The values of � are 0.70, 0.75, 0.77, 0.80, and 0.84 for ' = 0.25, 0.48, 0.50, 0.56, and 0.60, respectively.
(B) The mean squared displacement, 〈1r2

〉, which includes contributions from both species of particles at various '. The dashed black line has a slope of 1,
and the vertical dashed-dotted lines indicate the time scale of maximal non-Gaussianity, t∗. Note that r and 〈1r2

〉 are dimensionless quantities. (C) The local
coordinate system consists of three nearest neighbor large particles used to calculate the density distribution, �(�,�, r). (D–F ) Density distribution �(�,�, r) for
different values of r, that is, the distribution of particles around the central particle that are on a sphere of radius r. The volume fractions are 0.25, 0.56, and
0.60 for (D–F ), respectively. The values of r have been chosen such as to capture best the anisotropy of the 3D distribution. SI Appendix, Movies S3–S5 for other
values of r. As ' increases, the anisotropy of the density field also increases, i.e., �(�,�, r) depends on the angles � and � not only at small distances but also at
intermediate-length scales.
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stronger. For the highest density, ϕ = 0.60, the MSD shows
the characteristics of a dynamically frozen state, i.e., an extended
plateau.

The inability of g(r) to capture a significant change of the
structure that can rationalize the slowing down of the dynamics
is not entirely surprising, given that it only depends on the radial
distance r and hence neglects the angular correlations that may be
present in dense liquids. To detect such a correlation, we follow
the approach of ref. 21 and select three large nearest-neighbor
particles (Fig. 1C ). One of these particles (“first particle”) is
chosen to be the origin of the coordinate system, and we define
the line joining the first and a second particle as the z axis, and the
plane encompassing all three particles as the z-x plane. Using this
reference frame, we introduce spherical coordinates and calculate
the three-dimensional density distribution ρ(θ ,φ, r). [Focusing
on a reference frame defined solely by the large particles enhances
the angular correlation, although other choices, SI Appendix,
Figs. S5 and S6, do give similar results (31).] Thus, ρ(θ ,φ, r) is
a four-point correlation function since the density at a given
point in space is calculated with respect to three particles
(21, 22) and hence can be expected to give significant insight
into the relationship between structure and dynamics [Note
that to calculate the density distribution ρ(θ ,φ, r), we do not
differentiate whether the 4th particle is large or small].

Fig. 1D displays ρ(θ ,φ, r) at constant r for ϕ = 0.25 and
different values of r (SI Appendix, Movie S3). Similar to g(r),
for ϕ = 0.25, the angular correlations in ρ(θ ,φ, r) do not
extend beyond the first nearest-neighbor shell, i.e., one has only
short-range order. However, with increasing packing fraction,
ϕ = 0.56 (Fig. 1E and SI Appendix, Movie S4), the angular
dependence of ρ(θ ,φ, r) can be easily detected up to r = 4.01
and for ϕ = 0.60 (Fig. 1F and SI Appendix, Movie S5), even
at r = 5.10, a distance which corresponds to the sixth nearest-
neighbor shell. While established methods of identifying struc-

tural order, such as translational and orientational correlation
functions, do not signal the presence of a structural order at
intermediate length scales (32, 33), the 3D density distribution
ρ(θ ,φ, r) reveals that glassy colloidal liquids do in fact have
such an order. We also note that for r = 1.55, corresponding
to the distance between the first minimum and the second
nearest neighbor peak in g(r), ρ(θ ,φ, r) has a highly nontrivial
symmetric shape with dodecahedral-like symmetry while for
r = 1.96,ρ(θ ,φ, r) has icosahedral symmetry. With increasing r,
we find an alternating sequence of icosahedral and dodecahedral
symmetries, which is related to the fact that the particles in
one shell occupy the depressions formed by the particles in
the previous shell and that an icosahedron is the dual of a
dodecahedron and vice versa, Fig. 2D. The radial range in which
this alternating symmetry is detected increases with ϕ, indicating
a growing order with increasing packing fraction. Other order-
agnostic methods for quantifying structural correlation in glass-
forming liquids, such as patch correlation (18, 34), and point-
to-set correlation, which are also multipoint correlators (4, 5),
have not uncovered such clear static correlations extending to
intermediate-length scales, demonstrating the usefulness of the
present approach. Unraveling such order in any commonly
studied model glass former has so far not been achieved since
either the employed methods were not sensitive to angular
correlations, e.g., in the point-to-set approach refs. 4 and 5,
and/or did not probe such correlation on sufficiently large length
scales because of the high computational cost, e.g., the patch
correlation length considered in ref. 35.

Quantifying Intermediate-RangeOrder. Further insight into the
observed intermediate-range order is obtained by quantifying the
anisotropy of ρ(θ ,φ, r). For this, we decompose the angular
signal on the sphere into spherical harmonics, Y l

m(θ ,φ), as
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Fig. 2. Quantitative characterization of the density field’s structural order and three-dimensional representation. (A–C) show angular power spectra, S�(6, r),
normalized angular power spectra, S�(6, r), and radial distribution function, |g(r)− 1|, for ' = 0.25, ' = 0.56, and ' = 0.60, respectively. S�(6, r) (cyan curves)
shows an exponential decay as a function of the distance r, whereas S�(6, r) (red curves) stays large even at intermediate r. The local maxima of S�(6, r), and
S�(6, r) are near the local minima of |g(r) − 1| (orange curves). (D) An icosahedron (blue color) is the dual polyhedron of a dodecahedron (red color), with the
centers of the faces of one polyhedron corresponding to the vertices of the other. (E–G) show the three-dimensional representation of the density field for
' = 0.25, ' = 0.56, and ' = 0.60, respectively. The shown layers correspond to distances at which S�(6, r) has a local maximum. Only regions with high density
(covering 25% surface area of the sphere) are depicted. The bluish/reddish colors correspond to the locations of the alternate local maxima of S�(6, r) and thus
correspond to shells with icosahedral/dodecahedral symmetry. Additionally, the icosahedral (labeled as "Icos.") and dodecahedral (labeled as "Dode.") layers
have also been highlighted in (F)) and (G) for ' = 0.56 and ' = 0.60.
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ρ(θ ,φ, r) =
∑
∞

l=0
∑l

m=−l ρ
m
l (r)Y m

l (θ ,φ), and then compute
the square root of the angular power spectrum, Sρ(l, r) =[
(2l + 1)−1∑l

m=−l
∣∣ρm

l (r)
∣∣2]1/2

, where ρm
l (r) are the expan-

sion coefficients (Materials and Methods) (21). To probe these
angular correlations in an order agnostic manner, we computed
Sρ(l, r) for various choices of l (SI Appendix, Figs. S6 and S7).
The largest signal is found for l = 6, in agreement with the
icosahedral/dodecahedral symmetries seen in the snapshots of
Fig. 1. Fig. 2 A–C shows the r-dependence of Sρ(l = 6, r), for
ϕ = 0.25, 0.56, and 0.60, respectively. For all ϕ, the envelope
of Sρ(l = 6, r) decays exponentially with r, in agreement with
the results of simulations (21), with a decay length that increases
with ϕ.

Note that Sρ(l = 6, r) is sensitive not only to the angular
dependence but also to the amplitude of ρ(θ ,φ, r). In order to
take this into account, we consider the normalized distribution
η(θ ,φ, r) = ρ(θ ,φ,r)−ρmin(θ ,φ,r)

ρmax(θ ,φ,r)−ρmin(θ ,φ,r) , where ρmax(θ ,φ, r) and
ρmin(θ ,φ, r) represent, respectively, the maximum and mini-
mum of ρ(θ ,φ, r) at fixed r (Materials and Methods). The square
root of the normalized angular power spectrum, Sη(l = 6, r),
calculated akin to Sρ(l = 6, r), is included in Fig. 2 A–C as
well, and reveals that angular correlations are indeed long-range
and grow with ϕ (SI Appendix, Fig. S8). The simulations of the
Lennard-Jones liquid of ref. 21 found that the height of the local
maxima of Sη(l = 6, r) alternates between high and low values.
Our r-dependence of Sη(6, r) does not reveal this, and we relate
this to the polydispersity of our colloidal particles or the fact that
here the interaction potential is softer than the Lennard-Jones
potential considered in ref. 21 due to only a partial screening of
the particle charge (Materials and Methods). We also note that
the height of the first peak of Sη(l = 6, r) is smaller than the
one of subsequent peaks, suggesting that the icosahedral order (if
at all present) is weaker in the first nearest-neighbor shell and is
clearly not the LFS (8, 36).

We also remark that for all ϕ, the decay of Sρ(6, r) matches
very well the one seen in g(r), which is reasonable since the
angular integral of ρ(θ ,φ, r) is roughly proportional to g(r).
Interestingly, we find that the locations of the local maxima of
Sρ(6, r) are near the local minima of |g(r) − 1|, a result that
matches the behavior of open network liquids like silica but not
the one of the BLJM system (21). This observation demonstrates
that Sρ(6, r) encodes interesting structural information that
should be investigated further in the future.

Fig. 2 E–G displays a 3D representation of the density field
for ϕ = 0.25, 0.56, and 0.60, respectively. The layers shown
correspond to distances at which Sρ(6, r) has a local maximum.
The bluish and reddish hues correspond to the alternate local
maxima of Sρ(6, r), which beautifully capture the growing
angular anisotropy in liquids with supercooling. These striking
visual density maps for ϕ = 0.56 and ϕ = 0.60 indicate
that liquids are significantly ordered, with the interlocking
layers alternatively possessing an icosahedral (bluish color) and
dodecahedral symmetry (reddish color).

Connecting Intermediate-Range Order and Dynamics. Figs. 1
and 2 provide clear evidence for a growing intermediate-range
order with increasing ϕ. These results were obtained by aver-
aging over the entire system while glassy liquids are known
to have a dynamics which is spatio-temporally heterogeneous
(7, 23, 28, 37–39), and many experimental (6–8, 36, 40, 41)
and simulation (4, 5, 9, 19, 20, 23) studies have found that this

dynamics has a strong connection to the underlying structure. In
light of these previous results, it is natural to investigate whether
the strength of the intermediate-range order is significantly
different between mobile and immobile regions, expecting that
the structural order is more pronounced in the dynamically
immobile regions than in the dynamically mobile ones. To
identify these dynamical mobile and immobile regions, we first
compute the Van Hove correlation function, Gs(x, t), at the
time t∗ at which the non-Gaussian parameter has its maximum,
i.e., when the dynamical heterogeneities are most pronounced
(SI Appendix, Fig. S9 and Fig. 1B). From the tail and the
center of Gs(x, t∗), we identify the top 10% of the mobile and
immobile particles, respectively, Fig. 3A (SI Appendix, Fig. S10
for the 20% and 30% threshold). Fig. 3B shows a snapshot
of these particles. We then use these mobile and immobile
particles to calculate, respectively, the density fields ρM (θ ,φ, r)
and ρI (θ ,φ, r) and subsequently the normalized deviation of

ρα(θ ,φ, r) from the mean density, ρα(θ ,φ,r)−ρα(θ ,φ,r)
max(ρI (θ ,φ,r)) , with

α ∈ {M, I }, and difference ρD(θ ,φ, r)fluc (Eq. 9 and Fig. 3
C and D and SI Appendix, Movies S6 and S7 for ϕ = 0.56,
and 0.60, respectively). (For these calculations, only the particle
at the center of the sphere was of mobile/immobile type.) The
colormaps in Fig. 3 C and D show that the structure around
immobile particles is clearly more ordered than the one around
mobile ones, and it extends to larger distances: For ϕ = 0.56
(Fig. 3C and SI Appendix, Movie S6), the difference in the
angular signal can be easily detected up to r ≈ 3 and for
ϕ = 0.60 (Fig. 3D and SI Appendix, Movie S7), even at r ≈ 4.41.
This finding demonstrates, thus, for the first time, that in dense
colloidal liquids, the dynamics of immobile and mobile particles
are strongly connected to their intermediate-range order. This
result can be quantified by considering Sη(l = 6, r) for the
mobile [SM

η (6, r)] and immobile [SI
η(6, r)] particles, Fig. 3E

(SI Appendix, Fig. S11 for ϕ = 0.60). As r increases, we clearly
recognize that ordering is more pronounced in the surrounding
of the immobile particles than the one of the mobile particles,
especially for intermediate r values (SI Appendix, Figs. S11
and S12 for the influence of the threshold, here 10%). Also
remarkable is the fact that at small r, there is no noticeable
difference between SM

η (6, r) and SI
η(6, r), which suggests that

the mobility of a particle may not be very sensitive to its structure
in the nearest-neighbor shell.

To further reinforce these conclusions, we plot in Fig. 3 F
and G the ratio of peaks height of SI

η(6, r) and SM
η (6, r) for

two different ϕ and three different mobility threshold (SI Ap-
pendix, Fig. S13). As expected, when the distinction between
the immobile and mobile particles is small (larger mobility
thresholds), the ratio SI

η(6, r)/SM
η (6, r) remains close to one,

see green diamonds. As the mobility threshold is decreased to
20% (blue squares) and then to 10% (red circles) for both the
ϕ’s, we observe that SI

η(6, r)/SM
η (6, r) increases significantly and,

most remarkably, reaches a maximum for intermediate values
of r. This finding clearly demonstrates that intermediate-range
order, rather than short-range order, is strongly connected to the
dynamics of dense colloidal liquids. As we move further out in
r, SI

η(6, r)/SM
η (6, r) drops and becomes ≈1, most likely owing

to the weakening of the intermediate-range order. This result
is in line with a recent study that used machine learning (20),
which found that with increasing supercooling, the dynamics of
particles could be predicted accurately only when incorporating
structural information that extended up to intermediate-length
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Fig. 3. Probing the connection between intermediate-range order and dynamics. (A) Probability distribution of particle displacements (Van Hove correlation
function), Gs(x, t), at t = t∗, for ' = 0.56. Particles inside the green and orange shaded region are the top 10% immobile particles and 10% mobile particles,
respectively. (B) The locations of the top 10% immobile particles (green spheres), and 10% mobile particles (orange spheres), for ' = 0.56. Here we only show
mobile and immobile clusters of size ≥ 3 particles for ease of viewing. In the analysis of the dynamical heterogeneities and in the rendering of the particles we
do not distinguish between large and small particles. (C and D) The normalized deviation of the density field from mean density for top 10% immobile particles,
mobile particles, and the difference between the two for different r values. The plots are normalized using the maximum of the immobile density map for a fixed
' and r. '’s are 0.56 and 0.60 for (C), and (D), respectively. The colormaps show immobile particles are more ordered compared to most mobile ones. (E) S�(6, r)
for top 10% immobile [SI�(6, r), green curve] and mobile particles [SM� (6, r), orange curve] versus r for ' = 0.56. (F and G) shows the non-monotonic evolution of
SI�(6, r)/SM� (6, r) as a function of r for ' = 0.56, and ' = 0.60, respectively. Here mobility threshold cutoffs of 10%, 20%, and 30% are shown in red circles, blue
squares, and green diamonds, respectively. The peak position of SI�(6, r)/SM� (6, r) shifts from r ≈ 2.8 to r ≈ 4.0 as the volume fraction changes from ' = 0.56
to ' = 0.60.

scales (r ≈ 5). However, this quantity, obtained using graph
neural networks, cannot be directly translated into physically
transparent quantities (20). In contrast to this approach, results
obtained from our simple four-point correlator show that struc-
ture and dynamics correlate at intermediate-length scales and
provide compelling experimental evidence of growing angular
structural correlations with supercooling.

Summary and Conclusions. Our single-particle resolved experi-
ments reveal that the colloidal liquids studied here have a rich
structure comprising alternating icosahedral and dodecahedral
layers extending to distances well beyond a few particle diameters.
While the standard pair-correlation function for these liquids is
practically featureless at these distances, the four-point correlators
introduced in ref. 21 easily pick up this intermediate range order.
In agreement with numerical simulations, this order becomes

more pronounced on increasing the particle number density, i.e.,
on supercooling. By determining the structure separately in the
dynamically fast and slow regions, we show that intermediate-
range order is significantly more pronounced in the slow regions
than the fast ones, while we find little difference in the structure
in the first nearest-neighbor shell. This is thus the first direct real
space evidence that the structure on intermediate-length scales is
highly relevant for the relaxation dynamics of glass-formers.

Dynamical heterogeneities are believed to hold the key for
understanding the nature of theα-relaxation and thus the slowing
down of the dynamics with increasing density (23, 42). Our
work hints that this key might be encoded in structural features
on length scales that are significantly larger than expected so far.
Hence, in the future, this intermediate range structure should
be studied in more detail also for other glass-formers since such
investigations will allow to unveil connections between structural
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features with dynamical quantities like the kinetic fragility of the
glass-former. The presented results are also consistent with a
physical picture in which a static correlation length increases
as one approaches the glass transition (4–9). Determining if
the intermediate-range order observed here also influences other
liquid state processes, such as crystal nucleation and growth,
is a natural step forward. Here again, colloidal systems will
be indispensable (43). Finally, it is tempting to wonder if the
growing static length scale on supercooling found in machine
learning approaches (20), including those that explicitly consider
angular information (44, 45), is indeed the one determined by the
simple four-point correlation function probed here. Answering
this question will allow to advance our understanding of the
mechanism leading to the dramatic slowing down of the dynamics
of glass-forming systems.

Materials and Methods

Our system consists of a binary mixture of NS small and NL large PMMA
colloids (density: dPMMA = 1.19 g/cm3; dielectric constantεr, PMMA = 2.6;
refractive index nPMMA = 1.492), of radius rS = 0.755μm (polydispersity<
3%, Dye: DilC18, excitation wavelength: 552 nm) and rL = 0.908 μm
(polydispersity < 3%, Dye: NBD, excitation wavelength: 488 nm) suspended
in an oil mixture of cyclohexyl bromide (CHB; Sigma-Aldrich; density dCHB =

1.336 g/cm3; dielectric constant εr, CHB = 7.92; refractive index nCHB =

1.4935), and decalin (Spectrochem; density ddecalin = 0.896 g/cm3; dielectric
constant εr, decalin = 2.176; refractive index ndecalin = 1.481). The refractive
index and density of the oil mixture nearly match those of the particles (24, 25).
The particle size ratio rL/rS ≈ 1.2 and number density ratio ≈80:20 provide
sufficient frustration to prevent crystallization (26, 46). The PMMA colloidal
particles become charged in a low-polarity solvent oil (mixture of cyclohexyl
bromide, CHB, and decalin), possibly due to the dissociation of CHB into H+ and
Br- (24, 25). Although we have added 260 μM tetrabutylammonium chloride
salt (TBAC, Sigma-Aldrich) to screen the charge on the colloidal particles, this
screening is only partial, resulting in a soft repulsion between the colloidal
particles. The samples were loaded into a closed cylindrical cell and imaged
using a Leica SP8-II confocal microscope (63X oil immersion objective, numerical
aperture 1.4, excitation wavelength 488 nm and 552 nm). The time delay
between successive acquisitions of the 3D stacks is between 20 s and 30 s,
depending onϕ. The acquisition time for each 3D stack is≈14 s, and the time to
image a X×Y×Z region of 92μm×92μm×1.5μm is only 0.5 s. This ensures
that particles do not appear distorted due to thermal motion. The imaged 3D
volume was≈ 92 μm× 92 μm× 45 μm, which contained≈50,000 particles
for ϕ = 0.60. For all ϕ, we also carried out 2D imaging in the middle of the 3D
sample to capture the dynamics at higher frame rates. The adaptive focus control
feature of the microscope was employed to maintain the focus on the observed
plane throughout the experiment. Frame rates for 2D imaging varied from 10 Hz
to 1 Hz, depending on ϕ. The scan field of the 2D area was 92 μm × 92 μm
and consisted of≈2,100 particles for ϕ = 0.60. Standard Matlab algorithms
(47) were used to generate particle trajectories, and subsequent analysis was
performed using in-house developed codes.

To quantify the intermediate-range order, the 3D density distribution
ρ(θ ,φ, r) on the surface of a sphere was decomposed into spherical harmonics,
Ym

l (θ ,φ):

ρ(θ ,φ, r) =

∞∑
l=0

l∑
m=−l

ρm
l (r)Ym

l (θ ,φ). [1]

Here,θ is the polar angle,φ is the azimuthal angle, andρm
l (r) are expansion

coefficients of ρ(θ ,φ, r) and given by:

ρm
l (r) =

∫ 2π

0
dφ
∫ π

0
sin(θ) ρ(θ ,φ, r)Ym∗

l (θ ,φ)dθ. [2]

Here, Ym∗
l (θ ,φ) is the complex conjugate of the spherical harmonics

function of degree l and order m. The square root of the angular power spectrum
is given by:

Sρ(l, r) =


∑l

m=−l

∣∣∣ρm
l (r)

∣∣∣2
2l + 1


1/2

. [3]

The normalized density distribution, η(θ ,φ, r), was defined as:

η(θ ,φ, r) =
ρ(θ ,φ, r)− ρmin(θ ,φ, r)
ρmax(θ ,φ, r)− ρmin(θ ,φ, r)

. [4]

Here, ρmax(θ ,φ, r) and ρmin(θ ,φ, r) are, respectively, the maximum
and minimum of ρ(θ ,φ, r). Akin to ρ(θ ,φ, r), the normalized den-
sity distribution, η(θ ,φ, r), was decomposed into spherical harmonics,
Ym

l (θ ,φ), i.e.,

η(θ ,φ, r) =

∞∑
l=0

l∑
m=−l

ρm
l,η(r)Ym

l (θ ,φ). [5]

Here, ρm
l,η(r) are expansion coefficients of η(θ ,φ, r) and obtained from:

ρm
l,η(r) =

∫ 2π

0
dφ
∫ π

0
sin(θ) η(θ ,φ, r)Ym∗

l (θ ,φ)dθ , [6]

from which we obtain

Sη(l, r) =


∑l

m=−l

∣∣∣ρm
l,η(r)

∣∣∣2
2l + 1


1/2

. [7]

The normalized deviation of the density distribution for immobile and mobile
particles from the mean density, ρα(θ ,φ, r)fluc , is calculated as:

ρα(θ ,φ, r)fluc =
ρα(θ ,φ, r)− ρα(θ ,φ, r)

max(ρI(θ ,φ, r))
. [8]

Here,ρα(θ ,φ, r) is the density distribution for immobile/mobile particles, with
α ∈ {I, M}. We note that for the calculation ofρM andρI, we considered only the
case in which the three particles used to define the coordinate system were large
since the structural order around the small particles is much less pronounced,
SI Appendix, Fig. S6. The normalized deviation of the density distribution for
the difference between immobile and mobile particles from mean density,
ρD(θ ,φ, r)fluc , is calculated as

ρD(θ ,φ, r)fluc =
ρI(θ ,φ, r)− ρM(θ ,φ, r)− ρI(θ ,φ, r)− ρM(θ ,φ, r)

max(ρI(θ ,φ, r))
[9]

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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