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Universal power-law scaling in the packing structure of frictional granular materials

Jiajun Tang,1 Xiaohui Wen ,1 Zhen Zhang ,1,* and Yujie Wang1,2,3,†

1Department of Physics, Chengdu University of Technology, Chengdu 610059, China
2State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

3School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

(Received 5 September 2024; accepted 3 January 2025; published 15 January 2025)

Friction-induced energy dissipation is one of the key factors contributing to the unique properties of granular
materials, such as the preparation history dependence of the packing structure. However, it remains unclear
whether or not more realistic systems that involve two or more types of friction possess unique properties
distinct from those that are frictionless or with a single type of friction. Here, we use numerical simulations to
investigate the packing structure of binary mixtures of particles with particle type–dependent friction coefficient.
Taking single-component systems as reference, we use an effective friction coefficient μe to represent the overall
frictional strength in granular systems prepared via different protocols. Our results demonstrate that μe exhibits
a power-law dependence on the individual friction coefficients. Furthermore, we propose models that accurately
predict the packing structure of frictional particle systems across a range of compositions, size ratios, and
preparation protocols.
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I. INTRODUCTION

Granular materials such as sands and powders are ubiqui-
tous in many industrial processes and geophysical phenomena
[1–5]. These systems are intrinsically in nonequilibrium due
to their athermal nature and complex energy dissipation pro-
cesses [3,6–8]. When subjected to external drives, granular
systems evolve into stationary packings.

Interparticle friction plays a crucial role in determining the
packing structure by affecting the mechanical stability of the
system [3,9–15]. Specifically, increased friction can expand
the packing fraction range of granular packings, which varies
from random loose packing to random close packing [14,16–
18]. Previous studies have shown that the loosest packing
structure that forms under a given condition depends strongly
on friction [19–22], as friction increases the density of states
for mechanically stable configurations [23,24]. Friction com-
plicates the stress network within the system, leading to varied
responses of the system to external drives, which in turn
results in different packing structures [11,23,25–29]. Despite
the importance of friction in granular packing, understanding
their relationship has been challenging since it might also
depend on the preparation history of the packing structure [5].

So far, studies have mainly been focused on granular sys-
tems that involve only a single type of friction, ignoring the
complexities arising from the coexistence of two or more
types of friction coefficients. However, in both natural and
industrial settings, granular systems are usually composed
of particles with distinct frictional characteristics, which can
have a significant influence on the flowability, packing effi-
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ciency, and mechanical stability of these materials [30–36].
Understanding the effects of multiple coexisting friction co-
efficients on the packing structure and properties of granular
systems is thus of both fundamental and practical importance.

In this work, we are motivated to understand the influence
of friction, focusing on how individual friction coefficients
are coupled to influence the packing structure. By analyzing
the differences in particle packing structures, we study the
macroscopic friction effects in binary mixtures with frictional
particles. We find that the packing fractions of different sys-
tems collapse onto a master curve that depends solely on
friction. Furthermore, we uncover a universal power-law re-
lationship associated with the coupling of multiple friction
effects, which allows us to simplify the influence of friction
in multicomponent systems to that of a single-component sys-
tem. These findings are useful for understanding the impact of
friction on the performance of granular materials in complex
scenarios.

II. MODEL AND METHOD

Molecular dynamics (MD) simulations were performed for
both single- and two-component frictional particle systems
using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) software [37]. The interactions be-
tween the particles were described by the Hertz-Mindlin
no-slip model, which has previously been successfully used to
study the properties of particle systems [38–40]. The normal
component F (n)

i j and tangential component F (t )
i j of the contact

force between particles i and j were given by

F (n)
i j = 4

3 Ei j (Ri j )
1/2 α3/2 ni j − βnv

(n)
i j , (1)

F (t )
i j = −kt aδt i j − βtv

(t )
i j . (2)
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FIG. 1. (a)–(c) Schematic illustration of the simulation process for preparing the packing structure using biaxial compression. (d)–(e)
Schematic illustration of the protocol to prepare the packing structure through random pouring. A and B particles are represented as balls in
red and blue, respectively.

For the normal force F (n)
i j , Ei j = [(1 − v2

i )E−1
i + (1 − v2

j )

E−1
j ]−1 is the effective Young’s modulus, where vi and Ei

are respectively the Poisson’s ratio and Young’s modulus of
particle i; Ri j = (R−1

i + R−1
j )−1 is the effective radius, where

Ri the radius of particle i; α = Ri + Rj − ‖ri j‖ is the particle’s
normal overlap, where ri j = ri − r j and ri is the position vec-
tor of particle i; ni j = ri j/‖ri j‖ is the normal unit vector, βn

the normal damping, and v
(n)
i j = [(v j − vi ) · ni j]ni j the normal

component of relative velocity, with vi the velocity vector
of particle i. For the tangential force F (t )

i j , kt = 8Gi j , where

Gi j = [(1 − v2
i )G−1

i + (1 − v2
j )G−1

j ]−1 is the effective shear

modulus with Gi the shear modulus of particle i; a = √
Ri jα is

the radius of the contact region, which is perpendicular to the
line connecting the centers of the two particles when they are
in contact; δ is the integrated tangential displacement, which
accounts for sliding and rolling motion; βt is tangential damp-
ing; v

(t )
i j = v j − vi − v

(n)
i j − (Riωi + Rjω j ) × n is the relative

tangential velocity at the point of contact with ωi, the angular
velocity vector of particle i; t i j = v

(t )
i j /‖v(t )

i j ‖ is the tangential
unit vector. Static friction was implemented by truncating
the tangential force F (t )

i j to satisfy the Coulomb yield criteria

‖F (t )
i j ‖ < ‖μF (n)

i j ‖, where μ is the static friction coefficient.
In this system, particles of types A and B have diameters

of dA and dB, respectively. μA and μB are the interparticle
friction coefficients between two A particles and two B par-
ticles, respectively. For the friction between type A and type
B particles (μAB), we considered it to be the geometric mean
(μAB = √

μAμB) or arithmetic mean (μAB = (μA + μB)/2).
We found that the main conclusions of this work are basically
independent of the specific choice of μAB (see next section).

We used two protocols to prepare the packing structure,
namely compression and random deposition. Our simulations
considered the following values for both μA and μB: 0.01, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. In the compression
protocol, particles were first randomly generated in a sim-
ulation box of dimensions 140d × 140d × 50d (x × y × z),
where d is the diameter of the A particle. Under gravity, the
particles settled to the bottom of the simulation box, forming
a loose two-dimensional structure, as shown in Fig. 1(a).
Compression of the box was achieved by reducing its di-
mensions along the x and y axes at a constant compressive

strain rate of 0.0025 τ−1 (τ is the time unit) while keeping the
dimension along the z-axis constant, as illustrated in Fig. 1(b).
The compression terminated when the x and y dimensions
were reduced to 30d . Fig. 1(c) shows the representative final
structure after compression. In this protocol, we considered
only the case where particles dA = dB, since a size-dispersed
system under compression would result in phase separation.
To study the compositional effect, we performed simulations
for x = 0.5 and x = 0.8, where x is the number fraction of A
particles. We performed 800 000 simulation steps under the
NVE ensemble, with a time step of 0.001τ . This included
100 000 steps for generating the particles, 600 000 steps for
compression, and 100 000 steps to allow the packing structure
to become stable.

In the random deposition protocol, we first generated par-
ticles in a cylindrical space and then allowed these particles
to fall into a cylindrical container under gravity to obtain a
three-dimensional packing structure, as shown in Figs. 1(d)–
1(f). The size of the simulation box was 50d × 50d × 80d
(x × y × z), and the diameter and height of the cylindri-
cal container were 40d . Since the total volume of the final
structure was fixed, the number of particles in the container
ranged from about 20 000 to 60 000, depending on composi-
tion. We introduced size dispersity by setting dB = αdA [41],
where α = 1.0, 1.2, and 1.4. For α = 1.2 and 1.4, we consid-
ered three compositions x = 0.2, 0.5, and 0.8. We performed
100 000 simulation steps under the NVE ensemble, with a
time step of 0.001τ . This included the time for generating the
particles and stabilizing the packing structure.

III. RESULTS AND DISCUSSION

Figure 2 shows the packing fraction φ and coordination
number z as a function of friction coefficient μ for the one-
component system. First, we note that both φ and z decrease
with the increase of μ, compatible with the results of Slib-
ert [14] (also included in the graph). The small difference
between the two results over the same range of μ might be
attributed to the influence of gravity, which was considered in
our simulations while not accounted for in the work of Slibert.
Since gravity can cause particle overlap to a certain degree, it
is reasonable to observe an increase in the values of phi and z.
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FIG. 2. Packing fraction ϕ and coordination number z as a func-
tion of friction coefficient μ in a monodisperse system. The blue
circles represent our results, while the red triangles are data extracted
from Slibert [14]. Solid symbols denote packing fractions, whereas
empty symbols represent coordination numbers.

Furthermore, given that the packing fraction ϕ typically
varies with the protocol used to prepare the granular struc-
ture, we first unify the range of variation of the packing
fraction by defining the normalized packing fraction ϕ̄ =
(ϕ − kϕmin)/(ϕmax − kϕmin), where ϕmax and ϕmin denote the
maximum and minimum values of the packing fraction, re-
spectively. We introduce a scaling factor k = 0.99 to ensure
that ϕ �= 0 when friction μ = 1. This scaling allows us to
better observe the relationship between ϕ and friction on a
logarithmic scale. Importantly, this scaling primarily affects
the data presentation on a logarithmic scale without altering
the underlying relationships between ϕ and μ. Specifically,
the expected value of effective friction μe, as shown in
Fig. 3(b), remains unaffected by this scaling.

Figure 3(a) shows the ϕ̄ as a function of the friction co-
efficient μ in the single-component system prepared by the
compression method. One observes that ϕ̄ depends exponen-
tially on μ, that is,

ϕ̄(μ) = P0 exp(P1μ), (3)

where P0 = 0.924 and P1 =−2.984 are the fitting parameters
that depend on the preparation protocol of the packing struc-
ture. Analogous to single-component systems, we define an
effective friction μe to measure the macroscopic friction effect
in binary systems. Specifically, the μe for a binary mixture
is equal to the friction coefficient of a single-component sys-
tem with the same packing fraction for the same preparation
protocol. We note that the “effective friction” defined here
and used throughout the paper is different from the usages
of this term in other fields, for example, for denoting the ratio
of shear stress to pressure [42]. This relationship provides a
reference for estimating μe in systems with multiple friction
coefficients. For instance, Fig. 3(b) presents the μe for the
x = 0.5 mixture based on the relation as given by Eq. (3)
for various values of μB and μA (different points with the
same symbol type). Overall, one recognizes that the larger the
μB, the smaller the packing fraction, which is consistent with
previous findings that stronger friction leads to less efficient
packing.

Having determined the effective friction coefficient μe, we
explored its dependence on the individual friction coefficients
μA and μB, (see Fig. 4, log-log scale). One observes that μe

shows a nice power-law dependence on μA, that is, μe ∝ μa
A
,

where c is a constant and a is the exponent. Similarly, we find
μe ∝ μb

B [see panels (c), (d)]. Therefore, we can further write
a general expression:

μe ∝ μa
A ∗ μb

B. (4)

On the condition that μe = μA = μB if μA = μB, the three
coefficients must satisfy that a + b = 1. Interestingly, we ob-
serve that, for a given composition, for example, x = 0.5,
a = b = 0.5, that is, consistent with their respective concen-
trations. Hence, by assuming that a:b = x:(1 − x), Eq. (2) can
be rewritten as

μe = μx
A

∗ μ1−x
B . (5)

To validate Eq. (5), we used it to calculate the potential
values of μe for different systems. Fig. 5(a) shows the cal-
culated μe versus the normalized packing density. The red
and green gradient colors represent compositions x = 0.5 and

FIG. 3. (a) The normalized packing fraction ϕ̄ as a function of the friction coefficient μ in the single-component system. The blue curve is
an exponential fitting to the data. (b) ϕ̄ as a function of the effective packing fraction μe for the two-component system at various μB. μe was
obtained by mapping the packing fraction to the fitting line in panel (a).
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FIG. 4. The effective friction coefficient μe as a function of the individual friction coefficient μα . The dashed lines are fits to the various
datasets.

FIG. 5. Correlation between the normalized packing fraction ϕ̄ and effective friction coefficient μe under two preparation methods. (a)–(b)
μAB = √

μAμB. (c), (d) μAB = (μA + μB)/2. The blue solid line is an exponential fit as shown in Fig. 3(a). The reddish and greenish colors
represent the compositions x = 0.5 and x = 0.8, respectively. The change of color from light to dark corresponds to an increase in μB.
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FIG. 6. Correlation between the normalized packing fraction ϕ̄ and effective friction coefficient μe for α = 1.2 (a)–(c) and α = 1.4 (d)–(f).
The change of color from light to dark corresponds to an increase in μB.

x = 0.8, respectively. We find that these data points are well
distributed around the reference line, which is determined
from a single-component system, as shown in Fig. 3(a). This
alignment confirms that Eq. (5) accurately captures the ef-
fective friction in multicomponent systems. Furthermore, we
tested the universality of Eq. (5) by applying it to binary
systems prepared using a random-pour method. We find that
the calculated results also align well with the reference line,
as shown in Fig. 5(b), demonstrating the robustness of our
functional form across different preparation protocols.

Figures 5(c)–5(d) show the correlation between the nor-
malized packing fraction and μe for μAB = (μA + μB)/2.
The results are nearly identical to those obtained for μAB =√

μAμB, panels (a), (b), demonstrating that the macroscopic
frictional effects observed in the binary system are indepen-
dent of the specific definition of μAB.

We use residual analysis to evaluate the goodness of fit
between the data points and Eq. (5). Specifically, we use
the coefficient of determination R2 = 1- SSR/SST, where R2

varies from 0 to 1 and a larger R2 indicates a better fit. Here,
SSR represents the sum of the squares of the differences
between the predicted and actual values, while SST represents
the sum of the squares of the differences between the actual
and mean values. Based on R2, one concludes that Eq. (5)
provides an accurate description of the data distribution.

The essence of Eq. (5) lies in the geometric mean of friction
across all particles, which is closely related to the nonlinear
relationship between packing density and friction. Frictional
granular systems can remain stable at densities above their
critical density. Consequently, the stability of a mixture of
particles with different friction coefficients is primarily deter-
mined by the low-friction particles, as they require a higher
packing density to maintain stability. Geometric averaging,

which is equivalent to arithmetic mean on a logarithmic scale,
better captures the significant impact of small-friction parti-
cles.

So far, our analysis has focused on systems with uni-
form particle sizes. To extend the applicability of Eq. (4) to
systems with particle size disparities, we introduce the size
ratio α = dB/dA. In binary mixtures of particles with different
sizes, the contact modes between different types of particles
differ significantly from those in a system with α = 1. These
different contact modes have a significant impact on the forces
between particles and the contact area, which Eq. (5) does not
explicitly account for. Therefore, directly using it to calculate
μe may not yield ideal results.

Due to the frictional effects existing only between particle
contacts, we scale the coefficients a and b in Eq. (4) to account
for the influence of particle size differences on the overall
particle arrangement. Structural analysis at both local and
extended levels reveals that larger particles play a more sig-
nificant role in determining the average structural properties
of the system. Consequently, larger particles should contribute
more to the macroscopic friction effects. This influence is also
composition dependent, leading us to introduce the mean par-
ticle diameter d̄ = xdA + (1 − x)dB to capture the interaction
between concentration and particle size differences. Based on
this, we set the coefficients a:b = x(dA)3: (1 − x) (dB/d̄ )

3
,

with d̄ appearing only in the coefficient for the B particles,
indicating the dominant role of the larger particles. The cubic
power arises from the effect of the particle size ratio on the
average packing fraction [43]. Therefore, μe can be written
as

μe = μ

x

x+(1−x)(α/d̄ )3

A ∗ μ
(1−x)(α/d̄ )3

x+(1−x)(α/d̄ )3

B . (6)
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In the special case of α = 1 or x = 0 or 1, Eq. (6) recovers
to Eq. (5).

Figure 6 shows the results for particle size ratios α = 1.2
and α = 1.4 for the binary mixtures as prepared by random
pouring. We observe that data for different concentrations
are distributed along the corresponding reference lines (each
subplot’s reference line corresponds to the fitting line for
μA = μB data at each concentration and particle size ratio).
This observation confirms the robustness of the macroscopic
friction effects and highlights how the coefficient scaling, due
to particle size ratios, reflects the structural origins of these
effects.

IV. CONCLUSION

In conclusion, our MD simulations revealed that the over-
all frictional strength in granular systems, represented by an

effective friction coefficient (μe), follows a power-law rela-
tionship with the individual friction coefficients. This finding
enabled us to develop predictive models that can accurately
describe the packing structure of binary mixtures of parti-
cles, considering variations in composition, size ratio, and
preparation protocol. These models offer valuable insights
into the behavior of complex granular systems, enhancing our
understanding of the influence of friction on packing structure,
and have implications for the dynamics of realistic granular
systems. Further experimental validation of the models pro-
posed in this work and extending them to compositionally
more complex systems are valuable.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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